# Inverse chain rule method

In calculus, the inverse chain rule is a method of integrating a function which relies on guessing the integral of that function, and then differentiating back using the chain rule. The method is a special case of integration by substitution.

For example, suppose one wants to find the indefinite integral:

[itex]

\int \sin( 5 x + 4 ) \ dx [itex]

A first guess of the antiderivative might be:

[itex]

\; -\cos( 5 x + 4 ), [itex]

treating (5x+4) as if it were an x. Differentiating back with the chain rule gives:

[itex]

\frac{ d }{ dx } \left( -\cos( 5 x + 4 ) \right) \; = \; 5\sin(5 x + 4) [itex]

Hence, the initial guess was off by a factor of 5. Dividing by 5 gives:

[itex]

\int \sin( 5 x + 4 ) \ dx \; = \; -\frac{1}{5} \cdot \cos( 5 x + 4 ) + C [itex]

This method can be used to find:

[itex]

\int f( g(x) ) \; dx [itex]

and g(x) is a linear function.

• Art and Cultures
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Space and Astronomy