Fundamental theorem of Riemannian geometry

From Academic Kids

In Riemannian geometry, the fundamental theorem of Riemannian geometry states that given a Riemannian manifold (or pseudo-Riemannian manifold) there is a unique torsion-free connection preserving the metric tensor. Such a connection is called a Levi-Civita connection.

More precisely:

Let <math>(M,g)<math> be a Riemannian manifold (or pseudo-Riemannian manifold) then there is a unique connection <math>\nabla<math> which satisfies the following conditions:
  1. for any vector fields <math>X,Y,Z<math> we have <math>Xg(Y,Z)=g(\nabla_X Y,Z)+g(Y,\nabla_X Z)<math>, where <math>Xg(Y,Z)<math> denotes the derivative of function <math>g(Y,Z)<math> along vector field <math>X<math>.
  2. for any vector fields <math>X,Y<math> we have <math>\nabla_XY-\nabla_YX=[X,Y]<math>, where <math>[X,Y]<math> denotes the Lie brackets for vector fields <math>X,Y<math> .
The following technical proof presents a formula for Cristoffel symbols of the connection in a local coordinate system. For a given metric this set of equations can become rather complicated. There are quicker and simpler methods to obtain the Christoffel symbols for a given metric, e.g. using the action integral and the associated Euler-Lagrange equations.


In this proof we use Einstein notation.

Consider the local coordinate system <math>x^i,\ i=1,2,...,m=dim(M)<math> and let us denote by <math>{\mathbf e}_i={\partial\over\partial x^i}<math> the field of basis frames.

The components <math>g_{i\;j}<math> are real numbers of the metric tensor applied to a basis, i.e.

<math>g_{i j} \equiv {\mathbf g}({\mathbf e}_i,{\mathbf e}_j)<math>

To specify the connection it is enough to specify the Cristoffel symbols <math>\Gamma^k_{ij}<math>.

Since <math>{\mathbf e}_i<math> are coordinate vector fields we have that

<math>[{\mathbf e}_i,{\mathbf e}_j]={\partial^2\over\partial x^j\partial x^i}-{\partial^2\over\partial x^i\partial x^j}=0<math>

for all <math>i<math> and <math>j<math>. Therefore the second property is equivalent to

<math>\nabla_{{\mathbf e}_i}{{\mathbf e}_j}-\nabla_{{\mathbf e}_j}{{\mathbf e}_i}=0,\ \ <math>which is equivalent to <math>\ \ \Gamma^k_{ij}=\Gamma^k_{ji}<math> for all <math>i,j<math> and <math>k<math>.

The first property of the Levi-Civita connection (above) then is equivalent to:

<math> \frac{\partial g_{ij}}{\partial x^k} = \Gamma^a_{k i}g_{aj} + \Gamma^a_{k j} g_{i a} <math>.

This gives the unique relation between the Christoffel symbols (defining the covariant derivative) and the metric tensor components.

We can invert this equation and express the Christoffel symbols with a little trick, by writing this equation three times with a handy choice of the indices

   \quad \frac{\partial g_{ij}}{\partial x^k} = 
       +\Gamma^a_{k j} g_{i a}         <math>
   \quad \frac{\partial g_{ik}}{\partial x^j} = 
       +\Gamma^a_{jk} g_{i a}           <math>
  - \frac{\partial g_{jk}}{\partial x^i} = 
       -\Gamma^a_{i k} g_{j a}          <math>

By adding, most of the terms on the right hand side cancel and we are left with

   g_{i a} \Gamma^a_{kj} =
   \frac{1}{2} \left(
   \frac{\partial g_{ij}}{\partial x^k}
   +\frac{\partial g_{ik}}{\partial x^j}
   -\frac{\partial g_{jk}}{\partial x^i}

<math> Or with the inverse of <math>\mathbf g<math>, defined as (using the Kronecker delta)

   g^{k i} g_{i l}= \delta^k_l  

<math> we write the Christoffel symbols as

       \Gamma^i_{kj} =
          \frac12   g^{i a} \left(
   \frac{\partial g_{aj}}{\partial x^k}
   +\frac{\partial g_{ak}}{\partial x^j}
   -\frac{\partial g_{jk}}{\partial x^a}

\right) <math>

In other words, the Christoffel symbols (and hence the covariant derivative) are completely determined by the metric, through equations involving the derivative of the fundamental de la geometrķa de Riemann


Academic Kids Menu

  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools