Binocular vision

From Academic Kids

Binocular vision essentially means vision with two eyes. The word binocular comes from two Latin roots, bin for two, and oculus for eye. Having two eyes confers at least two advantages over having one: it gives a creature a spare eye in case one is damaged, and it gives a wider field of view. For example, a human has a horizontal field of view with one eye of about 150 degrees and with two eyes of about 180 degrees.

For some authorities, binocular vision requires that the two eyes have overlapping fields of view, and that they be used together, cooperatively, to form a single image of the visual world. This sort of binocular vision confers at least two further advantages over monocular vision: binocular summation in which the ability to detect faint objects is enhanced, and stereopsis in which parallax provided by the two eye's different positions on the head give precise depth perception. Such binocular vision is usually accompanied by singleness of vision or binocular fusion, in which a single image is seen despite each eye's having its own image of any object.

Other phenomena of binocular vision include utrocular discrimination, eye dominance, allelotropia, and binocular rivalry.


Fields of view and eye movements

Some animals, usually prey animals, have their two eyes positioned on opposite sides of their heads to give the widest possible field of view. In such animals, the eyes often move independently to increase the field of view. Even without moving their eyes, some birds have a 360-degree field of view.

Other animals, usually predator animals, have their two eyes positioned on the front of their heads, thereby reducing field of view in favour of stereopsis. In such animals, the eyes usually move together. When the eyes move laterally, in the same direction, this is called a version. When the eyes move in opposite directions, to an object closer than where the eyes are pointing or farther than where the eyes are pointing, this is called a vergence. When the eyes move in, it is a convergence eye movement; when the eyes move out, it is a divergence eye movement.

Some animals (including some humans, notably exotropes) use both of the above strategies. A starling, for example, has laterally placed eyes to cover a wide field of view, but can also move them together to point to the front so their fields overlap giving stereopsis. A remarkable example is the chameleon, whose eyes appear to be mounted on turrets, each moving independently of the other, up or down, left or right. Nevertheless, the chameleon can bring both of its eyes to bear on a single object when it is hunting, showing vergence and stereopsis.

Binocular summation

Binocular summation means that the detection threshold for a stimulus is lower with two eyes than with one. There are two forms. First, when trying to detect a faint signal, there is a statistical advantage of using two detectors over using one. Mathematically, the advantage is equal to the square root of 2, about 1.41. Second, when some cells in the visual cortex receive input from both eyes simultaneously, they show binocular facilitation, a greater level of activity than the sum of the two activities evoked separately from each eye. Any advantage in using two eyes in detection task over 1.41 is credited to this sort of mechanism, dubbed neural summation.

Binocular interaction

Apart from binocular summation, the two eyes can influence each other in at least three ways.

  • Pupillary diameter. Light falling in one eye affects the diameter of the pupils in both eyes. One can easily see this by looking at a friend's eye while her or she closes the other: when the other eye is open, the pupil of the first eye is small; when the other eye is closed, the pupil of the first eye is large.
  • Accommodation and vergence. Accommodation is the state of focus of the eye. If one eye is open and the other closed, and one focusses on something close, the accommodation of the closed eye will become the same as that of the open eye. Moreover, the closed eye will tend to converge to point at the object. Accommodation and convergence are linked by a reflex, so that one evokes the other.

Utrocular discrimination

Utrocular discrimination is the ability to tell, when both eyes are open, to which eye a monocular stimulus was shown.

Singleness of vision

Once the fields of view overlap, there is a potential for confusion between the left and right eye's image of the same object. This can be dealt with in two ways: one image can be suppressed, so that only the other is seen, or the two images can be fused. If two images of a single object are seen, this is known as double vision or diplopia. Fusion of the images from the two eyes is considered to be separate from stereopsis for at least two reasons. First, some disorders of binocular vision, such as strabismus can spare fusion but abolish stereopsis. Second, the depth of an object either much nearer to or farther from where the eyes are fixating can be accurately judged despite the images of the object appearing double.

Fusion of images occurs only in a small volume of visual space around where the eyes are fixating. Running through the fixation point in the horizontal plane is a curved line for which objects there fall on identical retinal points in the two eyes. This line is called the horizontal horopter. There is also a vertical horopter, which is effectively tilted away from the eyes above the fixation point and towards the eyes below the fixation point. The horizontal and vertical horopters mark the centre of the volume of singleness of vision. Within this thin, curved volume, objects nearer and farther than the horopters are seen as single. The volume is known as Panum's fusional area (it's presumably called an area because it was measured by Panum only in the horizontal plane). Outside of Panum's fusional area (volume), double vision occurs.

Eye dominance

When each eye has its own image of objects, it becomes impossible to align images outside of Panum's fusional area with an image inside the area. This happens when one has to point to a distant object with one's finger. When one looks at one's fingertip, it is single but there are two images of the distant object. When one looks at the distant object it is single but there are two images of one's fingertip. To point successfully, one of the double images has to take precedence and one be ignored or suppressed. The eye of the image that takes precedence is called the dominant eye.


Stereopsis is an ability to make fine depth discriminations from parallax provided by the two eye's different positions on the head. There are two sorts: quantitative stereopsis, in which the depth seen is very similar to the actual depth of the object being judged, and qualitative stereopsis, in which the depth is correctly nearer or father than the fixation point but the amount of depth does not grow with distance of the object from the fixation point. Quantitative stereopsis holds for small distances from the fixation plane (approximately within Panum's fusional area); qualitative stereopsis holds for larger distances from the fixation plane (outside of Panum's fusional area). Eventually an object can be moved so far from the fixation plane that there is no sense of depth of the double images--instead they appear to be on the fixation plane.


Because the eyes are in different positions on the head, any object away from fixation and off the plane of the horopter has a different visual direction in each eye. Yet when the two monocular images of the object are fused, the object has a new visual direction, essentially the average of the two monocular visual directions. This is called allelotropia. The origin of the new visual direction is a point approximately between the two eyes, the so-called cyclopean eye. The position of the cyclopean eye is not usually exactly centred between the eyes, but tends to be closer to the dominant eye.

Binocular rivalry

When very different images are shown to the same retinal regions of the two eyes, perception settles on one for a few moments, then the other, then the first, and so on, for as long as one cares to look. This alternation of perception between the images of the two eyes is called binocular rivalry.

Rembrandt as a person without binocular vision

People whose eyes failed to align correctly could have no binocular vision. However, to an artist, this disability could have been a gift.

In an article published on September 16, 2004 in The New England Journal of Medicine, Margaret S. Livingstone, professor of neurobiology of Harvard Medical School, suggests that Rembrandt (July 15, 1606-October 4, 1669), generally considered one of the greatest painters in European art history, suffered from this disability. She made this conclusion after having studied 36 of Rembrandt's self-portraits.

Because Rembrandt did not have normal binocular vision, his brain automatically switched to one eye for many visual tasks. This could have helped him to flatten images as he saw them, and then put them onto the two-dimensional canvas. In the author's words:

Art teachers often instruct students to close one eye in order to flatten what they see. Therefore, stereoblindness might not be a handicap -- and might even be an asset -- for some artists.

See also


Academic Kids Menu

  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools